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Wide bandgap dielectrics are needed as gate insulators and surface passivation layers on the

emerging electronic oxide Ga2O3. X-ray photoelectron spectroscopy was used to determine the

valence band offset at LaAl2O3 (LAO)/b-Ga2O3 heterointerfaces. LaAl2O3 was deposited by RF

magnetron sputtering onto bulk Ga2O3 crystals. The bandgaps of the materials were determined by

reflection electron energy loss spectroscopy to be 4.6 eV for Ga2O3 and 6.4 eV for LAO. The

valence band offset was determined to be �0.21 6 0.02 eV (staggered gap, type II alignment) for

LAO on Ga2O3. This leads to a conduction band offset of 2.01 6 0.60 eV for LaAO with Ga2O3.

Thus, LAO provides excellent electron confinement but not hole confinement in LAO/Ga2O3 heter-

ostructures. VC 2017 American Vacuum Society. [http://dx.doi.org/10.1116/1.4984097]

I. INTRODUCTION

The b-polytype of Ga2O3 is a candidate for both high volt-

age electronics and truly solar-blind UV photodetectors.1–13 It

has a number of attractive features, including a larger bandgap

than either GaN or SiC and availability in a large diameter,

high quality single-crystal form.1–3 The large bandgap means

that it is capable of achieving high reverse breakdown voltages

in rectifier and transistor structures, with values over 1kV

already reported for vertical diodes.14 This material is a readily

doped n-type over a wide range of conductivities, and there

are recent reports of high quality epi films on bulk sub-

strates.1–4 There is a need to develop a robust metal-oxide-

semiconductor field effect transistor technology for

Ga2O3
8,9,11,12 as well as have surface passivation films that are

easily deposited and are selectively patternable relative to

Ga2O3.
4,11,15 Given the wide bandgap of Ga2O3, there are a

relatively limited number of candidate gate dielectrics for these

applications, including Al2O3, HfO2, and SiO2.16–19 These

have typically been deposited by atomic layer deposited

(ALD) or plasma enhanced chemical vapor deposition. For

gate dielectrics, it is desirable that both conduction and valence

band offsets (VBOs) are �1eV to achieve strong electron and

hole confinement in heterostructures.20–22

LaAlO3 (LAO) deposited by physical vapor deposition typ-

ically has a bandgap of around 6.5 eV and a dielectric constant

of �22 and is a potential candidate for use with Ga2O3 given

its large bandgap.23 LAO was extensively investigated as a

high-k dielectric for Si but did not have a sufficiently stable

interface with Si at the necessary processing temperatures.23

In this paper, we report on the determination of the band

alignment in the LAO/Ga2O3 heterostructure, in which LAO

was deposited by sputtering. We employ x-ray photoelectron

spectroscopy (XPS)24,25 to determine the valence band off-

sets, and by measuring the respective bandgaps of LAO

(6.4 eV) and Ga2O3 (4.6 eV), we were also able to determine

the conduction band offset in LAO/Ga2O3 heterostructures.

The band alignment is found to be of type II.

II. EXPERIMENT

LAO was deposited by RF magnetron sputtering on Ga2O3

and quartz substrates. The sputtering was carried out at room

temperature using a 3-in. diameter target of pure LAO. The

RF power was 355 W, and the deposition pressure was 5

mTorr in a pure Ar ambient. The bulk b-phase Ga2O3 single

crystals with (�201) surface orientation (Tamura Corporation,

Japan) were grown by the edge-defined film-fed growth

method. Hall effect measurements showed that the sample was

unintentionally n-type with an electron concentration of �3

� 1017cm�3. The samples were not exposed to air prior to the

subsequent XPS measurements to avoid complications from

surface contamination. The latter may lead to less accurate

band gap measurements when using reflection electron energy

loss spectroscopy (REELS).

The method described in the study by Kraut et al.24,25

using x-ray photoemission spectroscopy has been established

as a reliable way to determine band offsets at the heterojunc-

tion interface. It is based on using an appropriate shallow

core-level position as a reference. Generally, this approach is

based on the assumption that the energy difference between

the core-level positions and the valence-band maximum

(VBM) is fixed in the bulk.26 The basic method is to first

measure the energy difference between a core level and the

VBM for both the single layer dielectric and the semicon-

ductor. One measures the reference core level bindinga)Electronic mail: spear@mse.ufl.edu

041201-1 J. Vac. Sci. Technol. B 35(4), Jul/Aug 2017 2166-2746/2017/35(4)/041201/5/$30.00 VC 2017 American Vacuum Society 041201-1

http://dx.doi.org/10.1116/1.4984097
http://dx.doi.org/10.1116/1.4984097
http://dx.doi.org/10.1116/1.4984097
http://dx.doi.org/10.1116/1.4984097
http://dx.doi.org/10.1116/1.4984097
http://dx.doi.org/10.1116/1.4984097
http://dx.doi.org/10.1116/1.4984097
mailto:spear@mse.ufl.edu
http://crossmark.crossref.org/dialog/?doi=10.1116/1.4984097&domain=pdf&date_stamp=2017-05-24


energies in thick films of each material and then measures

the binding energy difference between the two reference

core levels in the heterojunction. The value of DEV is deter-

mined by combining those three quantities.

Heterojunction samples, consisting of a thin (1.5 nm) layer

of LAO deposited on Ga2O3, were prepared, and the separa-

tion between reference core levels in each material was mea-

sured. The separation between the reference core levels was

then translated directly into a value for the VBO using the

previously measured single layer sample core-level to VBM

energies. To measure the valence band offsets, XPS survey

scans were performed to determine the chemical state of

LAO and Ga2O3 and identify peaks for high resolution analy-

sis.24,25 A Physical Electronics PHI 5100 XPS with an alumi-

num x-ray source (energy 1486.6 eV) with a source power of

300 W was used, with an analysis area of 2� 0.8 mm, a take-

off angle of 50�, and an acceptance angle of 67�. The elec-

tron pass energies were 23.5 eV for the high resolution scans

and 187.5 eV for the survey scans. The approximate escape

depth (3k sin h) of the electrons was 80 Å. All the peaks were

well-defined in this system, and we did not need to curve fit

the data.

Charge compensation was performed using an electron

flood gun.26 The charge compensation flood gun is often not

efficient in eliminating all surface charge, and additional cor-

rections must be performed. Using the known position of the

adventitious carbon (C-C) line in the C 1s spectra at

284.8 eV, charge correction was performed. During the

measurements, all the samples and electron analyzers were

electrically grounded, providing a common reference Fermi

level. Differential charging is a serious concern for photo-

emission dielectric/semiconductor band offset measure-

ments.26 While the use of an electron flood gun does not

guarantee that differential charging is not present and in

some cases could make the problem worse, our experience

with oxides on conducting substrates has been that the differ-

ential charging is minimized with the use of an electron gun.

Calibrations performed with and without the electron gun

operating showed this was the case.

REELS was employed to measure the bandgaps of LAO

and Ga2O3.27–31 REELS spectra were obtained using a 1 kV

electron beam and a hemispherical electron analyzer.

III. RESULTS AND DISCUSSION

Figure 1 shows the stacked XPS survey scans of thick

(200 nm) sputtered deposited LAO, 1.5 nm sputtered LAO

on Ga2O3, and the bulk Ga2O3 crystal. The spectra are free

from contaminants and consistent with previously published

XPS data.22,23,32 In particular, we looked carefully for the

presence of metallic contaminants in the sputtered films

whose oxides might lower the overall bandgap of LAO and

thus affect the band alignment.33–37 However, these were not

detected to the sensitivity level of XPS.

The valence band maximum (VBM) was determined by

linearly fitting the leading edge of the valence band and the

flat energy distribution from the XPS measurements and

finding the intersection of these two lines,25,26 as shown in

Fig. 2 for the bulk Ga2O3 (a) and thick LAO (b). The VBM

was measured to be 3.2 6 0.2 eV for Ga2O3, which is consis-

tent with previous reports,32 and 2.3 6 0.2 eV for the sputtered

LAO, which is also similar to previous measurements.23

The bandgap of Ga2O3 was determined to be 4.6 6 0.3 eV,

as shown in the REELS spectra in Fig. 3(a). The band gap

was determined from the onset of the energy loss spec-

trum.26,30 The bandgap of Ga2O3 is a function of the polytype,

and it is common in the literature to quote a value of �4.8 eV

for b-Ga2O3, but we and others have noted that optical

FIG. 1. XPS survey scans of thick sputtered LaAlO3, 1.5 nm sputtered

LaAlO3 on Ga2O3, and Ga2O3 bulk samples.

FIG. 2. (Color online) XPS spectra of core levels to the valence band maxi-

mum (VBM) for (a) bulk Ga2O3 and (b) thick film LaAlO3.
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transmittance and REELS data show a consistent value of

4.6 eV.17,32,38 He et al.39 reported a direct gap of 4.69 eV,

Varley calculated an indirect gap of 4.83 eV,40 while Peelaers

et al.41 reported an indirect gap of 4.84 eV. It seems clear that

due to the often phase-impure nature of early Ga2O3 samples

and the small energy difference between direct and indirect

gaps,42 there can be experimental uncertainties in establishing

the bandgap. In REELS, the onset of single particle excita-

tions can be observed as a step at an energy equal to the band

gap Eg below the core level and the band-gap found by draw-

ing a linear fit line with the maximum negative slope from a

point near the onset of the loss signal spectrum to the back-

ground level, as shown in Fig. 3(a). The energy corresponding

to the onset of inelastic losses is found by extrapolating the

linear-fit line and calculating its intersection with the “zero”

level.43 The band gap is the difference between the centroid

of elastic scattering and the calculated intersection. The preci-

sion of finding the band gap is limited because the slope of

the loss feature may not be very different from that of the

background of the XPS spectrum, making background sub-

traction difficult. One issue we have noticed in measuring

bandgaps of dielectrics using REELS is the effect of contami-

nation from carbon and water, as well as defects.43 These can

lead to high backgrounds in the spectrum, can create a higher

energy shoulder, or can “smear” the energy distribution. The

onset of energy loss then becomes difficult to distinguish; a

traditional fit to a horizontal line may give lower values, and

fitting to a lower slope can give artificially higher values of

the bandgap. The measured band gap for the sputtered LAO

was found to be 6.4 6 0.6 eV from the REELS data shown in

Fig. 3(b), which is consistent with literature values.23 The dif-

ference in bandgaps between Al2O3 and Ga2O3 is therefore

1.8 eV. To determine the actual band alignment and the

FIG. 3. (Color online) Reflection electron energy loss spectra to determine

the bandgap of (a) bulk Ga2O3 (top) and (b) thick LaAlO3.

FIG. 4. (Color online) High resolution XPS spectra of the vacuum-core delta

regions of (a) bulk Ga2O3 and (b) LaAlO3.

FIG. 5. High resolution XPS spectra for the Ga2O3 to LaAlO3-core delta

regions.
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respective valence and conduction band offsets, we examined

the core level spectra of the samples.

High resolution XPS spectra of the VBM-core delta

region are shown in Fig. 4 for the Ga2O3 (a) and thick sput-

tered LAO (b) samples. These data were then used to deter-

mine the core level peak positions. Figure 5 shows the XPS

spectra for the Ga2O3 to LAO-core delta regions of the heter-

ostructure samples. These values are summarized in Table I

and were substituted into the following equation to calculate

DEV:24–26

DEV ¼ ðECore � EVBMÞRef�Ga2O3
� ðECore � EVBMÞRef�LAO

�ðEGa2O3

Core � ELAO
Core Þ

LAO
Ga2O3

:

Figure 6 shows the simplified and detailed band diagrams

of the LAO/Ga2O3 heterostructure. Our data show that the

alignment is a staggered, type II alignment with a valence

band offset of �0.21 6 0.05 eV and the conduction band off-

set is then 2.01 6 0.5 eV using the following equation: DEC

¼ ELAO
g � EGa2O3

g � DEV ,

i:e:; DEC ¼ 6:4 eV� 4:6 eV� ð�0:21 eVÞ ¼ 2:01 eV:

This result shows that LAO used as a gate dielectric on

Ga2O3 would provide excellent electron confinement but no

barrier to hole transport. It might also be used as a surface

passivation layer to prevent surface conductivity changes

upon exposure to ambient. The sensitivity of Ga2O3 to water

vapor and hydrogen is not yet firmly established, but many

oxides like ZnO and InGaZnO4 do show such sensitivity and

require surface passivation to provide device stability in

humid ambient.

It appears that both Al2O3, with conduction and valence

band offsets of 1.5 and 0.7 eV,18 respectively, and SiO2, with

a conduction band offset of 3.1 and a valence band offset of

1.0 eV,17 are superior choices as gate dielectrics on Ga2O3.

Wheeler et al.19 measured the band alignment between ALD

ZrO2 or HfO2 and b-Ga2O3, and both dielectrics resulted in a

type II, staggered gap alignment with conduction band offsets

of 1.2 and 1.3 eV for ZrO2 and HfO2 films. Our data for LAO

fall into the latter category.

IV. SUMMARY AND CONCLUSIONS

The alignment at LaAlO3/Ga2O3 heterojunctions is found

to be a staggered gap alignment of band offsets with a valence

band offset of �0.21 eV and a conduction band offset of

2.01 eV determined from XPS measurements. The conduction

band offset is large enough to provide excellent electron con-

finement, but there is no barrier to hole transport. LAO could

still be an option as a surface passivation layer on Ga2O3.

TABLE I. Values of band offsets determined in these experiments (eV).

Reference Ga2O3 Reference LaAlO3 LaAlO3 on Ga2O3

Ga2O3 metal core Ga2O3 VBM Core level Metal core–VBM LaAlO3 VBM Al 2p core level Al 2p–VBM DCL Ga 2p3/2–Al 2p Valence band offset

Ga2p3/2 3.20 1118.10 1114.90 2.30 73.40 71.10 1044.01 �0.21

FIG. 6. Simple and detailed and diagrams of LaAlO3/Ga2O3 heterostructures.
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